Call for Abstract

4th Annual Conference on Stem Cell and Regenerative Medicine, will be organized around the theme “Recent Advancements in Stem Cell and Regenerative Medicine”

Stemgen 2021 is comprised of 22 tracks and 0 sessions designed to offer comprehensive sessions that address current issues in Stemgen 2021.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.


Gene therapy is a way to treat the genetic disorders. The variation in gene therapy is focused on somatic gene therapy and germ line gene therapy relating with viral and non-viral vectors. T-cells are the type of lymphocyte cells which are developed in the laboratory to attack the cancer cells. T-cell therapy is nothing but an immune therapy to treat certain kinds of cancer. The nano therapy is a new trend in the field of medicine which uses nanoparticles to delivery drugs to the targeted body part.



 



A cell having ability to develop into specialized cell types in body which replace the damaged or lost cells or tissues. Generally, natural stem cells are classified into embryonic stem cells and adult stem cells and the type of stem cells are reprogrammed in the laboratory are Induced Pluripotent Stem Cell. Basing on the efficiency or potency stem cells are classified into Totipotent, Multipotent, Pluripotent, Oligopotent, Unipotent. Stem cell therapy or regenerative medicine is the treatment method which develops methods to regrow repair or replace damaged or diseased cells, organs or tissues.



 



The procedure in which the cells are grown in an artificial environment separate from the body is called tissue engineering. It is an improvisation of growing cells than methods of 2D cell culture. The cells growing in 3D artificial environment are more relevant and effective than the cells growing in the 2D surface. The basic method of the 3D cell culture leads to the use of scaffolds which are the engineered materials which leads to cellular interaction in new tissues to be functional.



 



Biomedicine is a branch of medicine biology which deals with the study of biological and physiological principles to clinical practice. It can be related to many categories under the health care and biological related fields. Delivering of the drug to the body, biostatistical analysis, molecular medicine, and Nano medicine can be sub-categorized under Biomedicine. For example, the mechanism of delivering the drug describes the information about the drug being delivered in a biological concept.


 



Clinical trials on gene therapy products are often varying from the clinical trials design for other types of pharmaceutical products. The differences in trial design are necessitated by the distinctive features of these products. The clinical trials also reflect previous clinical experience and evidence of medicine. Early experiences with products indicate that some Gene Therapy products may pose substantial risks to subjects due to the effect at the cellular and genetic level. The design of early-phase clinical trials of Gene therapy products often involves the following consideration of clinical safety issues, preclinical issues, and chemistry, manufacturing and controls (CMC) issues that are encountered.



 



It has been stated that stem cells have an ability to produce a large number of cells which in turn helps in forming the destroyed tissue or an organ. In contrast, stem cells can also be aided in repairing the damaged organs, in which the mechanism carries out in two different options: support mechanism and replace option. The support mechanism of the stem cell is regeneration or the regrowth of the tissue or organ cells avoiding detrimental fibrosis. The replace option of the stem cell is to transplant the stem cell.



 



Stem cell therapy is the use of stem cells to treat/prevent disease. The bone-marrow transplant is the most widely used stem cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, as well as to apply stem cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease. The most well-established and widely used stem cell treatment is the transplantation of blood stem cells to treat diseases and conditions of the blood and immune system or to restore the blood system after treatments for specific cancers.



 



The process of “replacing tissues or organs, engineering or regenerating human cells to restore or establish normal function” is generally termed as Regenerative medicine. Regenerative medicine is a branch of Translational Research in the areas of tissue engineering and molecular biology. Regenerative medicine stimulates the body’s own repair mechanisms to engineer the damaged tissues and organs. 



 



Scaffolds are of great importance in clinical medicine. It is an upcoming field and usually associated with conditions involving organ disease or failure. It is used to rebuild organs and return normal function. Stem cells along with regenerative medicine can be used to create ‘Scaffolds’ in the human body. Tissue regeneration is a branch of Regenerative medicine which deals with the study of regrowth or repair of the damaged or lost tissues in response to the injury. Non-injured tissues by default have expanded cells in the formation over time, but the new cells formed in response to the injury replaces the expanded cells in closing up the wounded site leaving a scar mark on the skin. For example, an injured cell is regenerated in 4-5 weeks, whereas a non-injured cell regenerates in just 3-4 days.



Cancer stem cells (CSCs) are the cancer cells found within tumors or haematological regions that possess characteristics related to the normal stem cell. Cancer stem cells specifically have an ability to give rise to all cell types found in a particular cancer sample. CSCs are tumorigenic which form tumors cells; they generate tumors by self-renewal or rapid division of the cells differentiating into multiple cell type. These cells give rise to new tumors by metastasis and relapse caused by hypothesizing the stem cells to persist in tumors as a distinct population.



 



Embryonic Stem cell is a broad type of Stem cell, which is also known as pluripotent stem cells derived from the inner cell mass of blastocyst, an early stage of pre-implantation embryo. Human embryos consist of 50-150 cells when they reach the blastocyst stage in 4-5 days of post fertilization. The destruction of the blastocyst mainly results in the isolation of the embryo blast or inner cell mass, which ethically raises issues in the post-implantation stage of development whether embryos at the pre-implantation stage should be considered to have the same moral or legal status or not.



 



Nanotechnology in foundational microorganism treatment has developed as an exciting field. Connection contemplates among nanomaterial and Stem cell has made critical advances. The significance of nanotechnology in the major advancements of immature microorganism based treatment for different degenerative sicknesses is clear. Apart from tracking the limitation of foundational microorganisms, nanotechnology has improved targetability, half-life, and solidness of undifferentiated organisms by giving an appropriate microenvironment.



 



The restricted regenerative limit of the heart is the main consideration in cardiovascular breakdown and demise. When cardiovascular cells are unhealthy, it's difficult for them to mend like your body would with a cut. Considering how the heart shapes in babies and afterward develops is a characteristic advance for scientists keen on producing and recovering heart cells. They're additionally examining the impact of an undifferentiated organism determined cardiovascular cells on fixing harmed hearts and their capability to treat heart muscle infections.



 



Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle trouble. Neither moderate administration nor careful intercession gives sufficient treatment to a few pathologies. As a part of regenerative medicine, undeveloped cell treatments may beat the poor natural recuperating limit of a few musculoskeletal tissues. Muscle stem cells have significant implications towards the development of pharmacological or cell-based therapies for muscle disorders.



 



The 3D technique is a tissue imitating technology which combines cells and their growth factors along with biomaterials. It is used in printing tissues, cells, organs, etc. it requires bio-ink to print the tissues, cells and organs structurally layer-layer. The methods of 3D bioprinting include Prebioprinting, Bioprinting and Post bioprinting. Organ printing is categorized as Drop-based Bioprinting and Extrusion bioprinting.



 



The material or device or equipment required for treatment or for diagnosis is termed as a biomaterial. The biomaterials have broad application in the clinical or medical science. Hence, to study on biomaterials it is termed as biomaterial science and biomaterial engineering which is profoundly related with biomedical as well as research sector. The application of principles of biology and tools of engineering to create usable, tangible, economically viable products is termed as biomedical application of biomaterials.



 



Clinical tissue analysis correlates with histopathology which involves the examination of tissues in order to manifest the diseases. The method requires the hematoxylin and eosin (H and E stain) to identify tissues. Tissue analysis includes the method called Automated Tissue Image Analysis which is a computer controlled method in clinical or medical science, pharmaceuticals, etc.



 



Tissue remodeling is a technique of tissue engineering which involves restoration or reprogramming of tissues. It results in the maintenance and growth of the tissues. The cells which undergo pathological processes in observing the diseases of humans or animals is termed as organ models. Tissue engineering makes the improved format of modeling the phenotypes and screening the therapeutic solutions to the particular disease.



 



The technology which makes specific changes in the DNA of a cell. Genome editing depends on the double strand DNA break which has two major pathway mechanisms – non-homologous end joining (NHEJ) and homologous directed repair (HDR).  The genome editing technology heads with the processes like CRISPR, TALEN, ZNF and MAGE.



 



Apoptosis is the cell death which leads to a programming sequence of the elimination of old, unnecessary, unhealthy cells. This process is also known as cell suicide. When a cell commits suicide then the caspases become active. The signal transduction is a process in which the signals are transferred in an organism across the cells. In this process the proteins are termed as the receptors. The protein receptor gets signal through a primary messenger and then, undergoes conformational changes which changes its shape and interacts with molecules surrounding it.



 



The study of heritable phenotypic change which does not involve any change or alteration in DNA sequencing is known as Epigenetics.  These changes make modification in certain gene activities like histone modification, adding a methyl group to a part of a DNA molecule. The DNA alterations are not termed as genetic, rather they are called epigenetic.



 



Ageing is the complex process of deterioration of body functions through involvement of body cells and organs. Basically the ageing theory can be divided into two types – hematopoietic stem cell ageing and hair follicle stem cell ageing. Besides these two theories, the other theories of ageing are evolutionary theory, cellular theory, system theory and molecular theory. With ageing the bone marrow cellularity decreases.